Year 4 Maths

Number and Place Value
Learning From Home Activity Booklet

Maths: Number and Place Value Learning From Home Activity Booklet

Statutory Requirements	Activity Sheet	Page Number	Notes
Pupils should be taught to: - to count in multiples of $6,7,9,25$ and 1000; - find 1000 more or less than a given number; - count backwards through zero to include negative numbers; - recognise the place value of each digit in a fourdigit number (thousands, hundreds, tens, and ones); - order and compare numbers beyond 1000; - identify, represent and estimate numbers using different representations; - round any number to the nearest 10, 100 or 1000; - solve number and practical problems that involve all of the above and with increasingly large positive numbers.	Code Crackers	2	
	Alien Numbers	3	
	Add and Subtract 1000	4	
	Blast Off	5	
	Rounding Rabbits	6	
	Problem Solving	7	
	Lighthouse Problems	8	
	Parent Guide to Number and Place Value		

Maths: Number and Place Value Learning From Home Activity Booklet

Code Crackers

Professor Turing is trying to crack the codes below. However, he needs your help. All the codes are number sequences, but some of the numbers are missing. A number sequence is a list of numbers that are linked by a rule. If you calculate the rule, you can then calculate the next numbers in the sequence.
For example:

6
8

The sequence above is going up in twos, so the rule is $\mathbf{+ 2}$. The next 2 numbers in the sequence would be 12 and 14 . Complete the sequences below and write the rule below each sequence.(12)
18
24

Rule: \qquad

Rule: \qquad

Rule: \qquad
9000

Rule: \qquad

Challenge

Rule: \qquad

Alien Numbers

The digits 0-9 are used to make numbers. For example, the number 683, is made of the digits 6,8 and 3 . The position of the digits in this number are very important. Each digits postion shows its value. See the place value chart below.

thousands	hundreds	tens	ones
	6	8	3

The number six hundred and eighty-three is made up of six hundreds, eight tens and three ones. Use the place value chart to write the value of the underlined digit below each of the alien ships.

Well done! Now use your knowledge of place value to order the alien spaceships from smallest to biggest. Write the numbers on the number lines below.
$\Leftrightarrow 4361 \Longleftrightarrow \infty$

smallest
 \longrightarrow

smallest \square

\square

Add and Subtract 1000

Look at the number 6620 above. To increase this number by a thousand, simply add one thousand to the thousands column. To decrease this number by one thousand, subtract one thousand from the thousands column. What do you notice about the digits in the hundreds, tens and ones column? They stay the same!

Complete the following calculations below.

$325+1000=$	$5314-1000=$
$6423+1000=$	9431-1000 =
$4682+1000=$	$6485-1000=$
$8641+1000=$	9461-1000 =
$3495+1000=$	$7463-1000=$
$1458+1000=$	1838-1000 =
$2548+1000=$	2465-1000 =
$6693+1000=$	5917-1000 =
$7146+1000=$	$4064-1000=$
$6318+1000=$	9407-1000 =
$1547+1000=$	$3648-1000=$
$534+1000=$	$4367-1000=$

Circle the correct answer:

Blast Off

Counting backwards is a really useful skill - especially if you are counting down for a rocket's take off! But what happens if we are counting backwards and we get to ' 0 '? We keep counting backwards into negative numbers. Look at the negative number line below and practise counting backwards from 20.

We can use a negative number line to help complete calculations, for example $5-8.5$ is the number you start on, and 8 is the number of jumps you count backwards so $5-8=-3$. Use the number line to help you complete the following calculations.

6-12 =	$5-10=$	7-15 =
12-20 =	3-9 =	1-14 =

The astronauts on the rocket took the temperature around them on a thermometer at different points in their journey. Draw a line on each thermometer below to show where the mercury would be for each temperature. The first thermometer has been done for you.

Rounding Rabbits

In Australia, there is a huge population of rabbits which were first introduced to the country in the 18th century. During a week long project on 'Rabbit Watch' (an Australian TV show), members of the public were asked to count the number of rabbits they saw in their gardens. The results from different cities were added together and placed into the table below.

Round the numbers to the nearest 10, 100 and 1000.

City	Number of Rabbits seen	Rounded to the nearest 10	Rounded to the nearest 100	Rounded to the nearest 1000
Sydney	3428			
Canberra	5263			
Melbourne	7835			
Perth	4368			
Brisbane	2942			
Adelaide	5385			
Port Lincoln	6186			
Rockhampton	2543			

Cooper and Ruby are having a discussion about the question below.
Explain who you think is correct and why.
What is 3595 rounded to the nearest $\mathbf{1 0}$?

Problem Solving

Use your knowledge of number and place value to solve the following problems.

1. Letters from the Ancient Greek alphabet can also be used to represent numbers:

$$
\alpha=1 \quad \iota=10 \quad \rho=100
$$

What is the value of these Greek numbers?
$\rho \rho ı \iota \alpha \alpha \alpha$ \square

ррррにاルเا α

$\rho \rho \rho \iota \iota \iota \iota \alpha \alpha+\rho \iota \iota \alpha \alpha \alpha \alpha=$ \square

Write the number 627 using Greek symbols:
\square
2. Match the following number with the same value.

520 tens

5200 ones

520 hundreds

52 hundreds

52 tens

Lighthouse Problems

Below is a picture of a lighthouse. The sea level is usually taken as zero metres. Use the picture of the lighthouse to answer the following questions.

1. If the red fish is at $-2 m$ ($2 m$ below sea level):
a) where is the yellow fish?
b) where is the blue fish?
2. Draw a fish at -12 m .
3. Draw a seagull at 8 m .
4. How many metres higher is the seagull than the fish you have just drawn?
5. If each scale on the lighthouse represented 7 m , what would be the position of:

The red fish: \qquad
The yellow fish: \qquad
The blue fish: \qquad
The seagull: \qquad

